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Preface

Blockchain technology has been the subject of extensive attention from government,
enterprise, and academia due to its potential to create a trusted, decentralized
environment for a variety of applications. However, the current blockchain faces
a significant scalability bottleneck that limits its ability to meet the demands of
large-scale practical applications. The bottleneck is mainly characterized by low
performance efficiency and difficulty in functional extension, which pose significant
challenges for realizing the full potential of blockchain technology.

Over the past few years, substantial progress has been made in blockchain
scalability technologies. Various methods have been developed to improve the
performance of blockchain or enable cross-chain technology for interoperability.
However, the research in this field is still in its early stages of development.

This book aims to provide a comprehensive and state-of-the-art resource for
researchers, engineers, policymakers, and students interested in understanding and
addressing the scalability bottleneck problem in blockchain technology. The book
adopts an approach that is based on the existing large-scale application scenarios,
which provides readers with a comprehensive analysis of blockchain scalability
issues, key technologies, and future directions. The book covers various areas
related to blockchain scalability, including the root of blockchain scalability prob-
lems, mainstream blockchain performance, the classification of existing scalability
problem solutions, exciting sharding-based approaches, open issues, and future
directions to scale blockchain.

The book’s comprehensive coverage of blockchain scalability issues and solu-
tions makes it a valuable resource for anyone interested in understanding and
addressing the scalability bottleneck problem in blockchain technology. We hope
that this book will contribute to the realization of the full potential of blockchain
technology by providing a holistic view of the challenges and opportunities in this
field.

Guangdong, China Wuhui Chen
Zibin Zheng
Huawei Huang
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Chapter 1 ®
Blockchain Scalability Fundamentals Qe

Huawei Huang, Wei Kong, Sicong Zhou, Zibin Zheng, and Song Guo

1.1 Overview

Centralized security mechanisms are prone to Single Point of Failure, meaning that
once a centralized component is compromised, the whole system would cease to
function. The decentralization of blockchain can eliminate such concern without
the need of a trusted third party. With the benefit of decentralized characteristics,
blockchains have been deeply diving into multiple applications that are closely
related to every aspect of our daily life, such as cryptocurrencies, business appli-
cations, smart city, Internet-of-Things (IoT) applications, and etc. The blockchain
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theory and technology will bring substantial innovations, incentives, and a great
number of application scenarios in diverse fields.

‘We have found that a survey of the state-of-the-art theories, modelings and useful
tools that can (i) improve the performance of blockchains, and (ii) help better under-
stand blockchains, is still missing. As a result, we made in-depth investigations on
these directions and presented in this chapter includes the following contributions.

¢ We introduces the preliminaries of blockchains.

* We then present a comprehensive investigation on the state-of-the-art theoretical
modelings, analytics models, performance measurements, and useful experiment
tools for blockchains, blockchain networks, and blockchain systems.

* Several promising directions and open issues for future studies are also envi-
sioned finally.

1.2 Preliminaries of Blockchains

Blockchain is a promising paradigm for content distribution and distributed consen-
sus over P2P networks. In this section, we present the basic concepts, definitions
and terminologies of blockchains appeared in this chapter. Due to the frequent use
of acronyms in this book, we include an acronym table, i.e., Table 1 in the online
supplementary material.

1.2.1 Prime Blockchain Platforms
1.2.1.1 Bitcoin

Bitcoin is viewed as the blockchain system that executes the first cryptocurrency.
It builds upon two major techniques, i.e., Nakamoto Consensus and UTXO Model,
which are introduced as follows.

Nakamoto Consensus To achieve an agreement of blocks, Bitcoin adopts the
Nakamoto Consensus, in which miners generate new blocks by solving a puzzle. In
such a puzzle-solving process, also referred to as mining, miners need to calculate
a nonce value that fits the required difficulty level. Through changing the difficulty,
Bitcoin system can maintain a stable rate of block-generation, which is about one
block per 10 minutes. When a miner generates a new block, it broadcasts this
message to all the other miners in the network. If others receive this new block,
they add this block to their local chain. If all of the other miners receive this new
block timely, the length of the main chain increases by one. However, because of
the network delays, not always all the other miners can receive a new block in time.
When a miner generates a block before it receives the previous one, a fork yields.
Bitcoin addresses this issue by following the rule of longest chain.
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UTXO Model The Unspent Transaction Output (UTXO) model is adopted by
cryptocurrencies like Bitcoin, and other popular blockchain systems [1,2]. A UTXO
is a set of digital money, each represents a chain of ownership between the owners
and the receivers based on the cryptography technologies. In a blockchain, the
overall UTXOs form a set, in which each element denotes the unspent output of
a transaction, and can be used as an input for a future transaction. A client may own
multiple UTXOs, and the total coin of this client is calculated by summing up all
associated UTXOs. Using this model, blockchains can prevent the double-spend [3]
attacks efficiently.

1.2.1.2 Ethereum

Ethereum [4] is an open-source blockchain platform enabling the function of smart
contract. As the token in Ethereum, Ether is rewarded to the miners who conducted
computation to secure the consensus of the blockchain. Ethereum executes on
decentralized Ethereum Virtual Machines (EVMs), in which scripts are running on a
network consisting of public Ethereum nodes. Comparing with Bitcoin, the EVM’s
instruction set is believed Turing-complete. Ethereum also introduces an internal
pricing mechanism, called gas. A unit of gas measures the amount of computational
effort needed to execute operations in a transaction. Thus, gas mechanism is useful
to restrain the spam in smart contracts. Ethereum 2.0 is an upgraded version based
on the original Ethereum. The upgrades include a transition from PoW to Proof-
of-Stake (PoS), and a throughput-improving based on sharding technologies. The
comparison between Bitcoin & Ethereum is summarized in Table 1.1.

Account/Balance Model Unlike Bitcoin where states are composed by UTXOs,
Ethereum adopts a more common and straightforward model that is used by
banks, the Account/Balance Model. In every account, an incrementing counter of
transaction execution, nonce, is implemented to prevent double spending attacks,
which serves as a complement for the model’s simple structure. There are basically
2 types of accounts, external owned accounts (EOAs) and contract accounts (CAs),
each controlled by private keys and contract codes, respectively.

Table 1.1 Comparison between Bitcoin and Ethereum

State model Consensus protocols Throughput
Bitcoin UTXO PoW 3 to 7 TPS[S5]
Ethereum1.0 Account/balance PoW 7 to 15 TPS[5]

Ethereum?2.0 Account/balance PoS sharding Unknown
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1.2.1.3 Hyperledger Fabric

Hyperledger Fabric [6] is a popular permissioned blockchain platform for industrial
use. In industry, goals are quite different from cryptocurrency systems. Greater
significance is attached to lower maintenance cost, higher throughput performance
and permission control. For a node in a permissioned setting, other nodes, though
untrusted, the identities are known. With different levels of trust among users,
different consensus protocols can be customized for fault tolerant.

1.2.14 EOSIO

EOSIO [7] is another popular blockchain platform released by a company block.one
on 2018. Different from Bitcoin and Ethereum, the smart contracts of EOSIO
don’t need to pay transaction fees. Its throughput is claimed to reach millions of
transactions per second. Furthermore, EOSIO also enables low block-confirmatoin
latency, low-overhead BFT finality, and etc. These excellent features has attracted
a large-number of users and developers to quickly and easily deploy decentralized
applications in a governed blockchain. For example, in total 89,800,000 EOSIO
blocks have been generated in less than one and a half years since its first launching.

1.2.2 Consensus Mechanism

The consensus mechanism in blockchains is for fault-tolerant to achieve an agree-
ment on the same state of the blockchain network, such as a single state of
all transactions in a cryptocurrency blockchain. Popular proof-based consensus
protocols include PoW and PoS. In PoW, miners compete with each other to solve a
puzzle that is difficult to produce a result but easy to verify the result by others. Once
aminer yields a required nonce value through a huge number of attempts, it gets paid
a certain cryptocurrencies for creating a new block. In contrast, PoS doesn’t have
miners. Instead, the new block is forged by validators selected randomly within a
committee. The probability to be chosen as a validator is linearly related to the size
of its stake. PoW and PoS are both adopted as consensus protocols for the security
of cryptocurrencies. The former is based on the CPU power, and the latter on the
coin age. Therefore, PoS is with lower energy-cost and less likely to be attacked by
the 51% attack.

1.2.3 Scalability of Blockchains

Blockchain as a distributed and public database of transactions has become a plat-
form for decentralized applications. Despite its increasing popularity, blockchain
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technology faces the scalability problem: throughput does not scale with the
increasing network size. Thus, scalable blockchain protocols that can solve the
scalability issues are still in an urgent need. Many different directions, such as Off-
chain, DAG, and Sharding techniques, have been exploited to address the scalability
of blockchains. Here, we present several representative terms related to scalability.

1.2.3.1 Off-Chain Techniques

Contrary to the on-chain transactions that are dealt with on the blockchain and
visible to all nodes of the blockchain network, the off-chain transactions are
processed outside the blockchain through a third-party guarantor who endorses the
correctness of the transaction. The on-chain transactions incur longer latencies since
the confirmation of an on-chain transaction has to take different steps. In contrast,
the off-chain techniques can instantly execute the off-chain transactions because
those transactions don’t need to wait on the queue as on an on-chain network.

1.2.3.2 DAG

Mathematically, a DAG is a finite directed graph where no directed cycles exist.
In the context of blockchain, DAG is viewed as a revolutionized technology that
can upgrade blockchain to a new generation. This is because DAG is blockless, and
all transactions link to multiple other transactions following a topological order on
a DAG network. Thus, data can move directly between network participants. This
results in a faster, cheaper and more scalable solution for blockchains. In fact, the
bottleneck of blockchains mainly relies on the structure of blocks. Thus, probably
the blockless DAG could be a promising solution to improve the scalability of
blockchains substantially.

1.2.3.3 Sharding Technique

The consensus protocol of Bitcoin, i.e., Nakamoto Consensus, has significant
drawbacks on the performance of transaction throughput and network scalability. To
address these issues, sharding technique is one of the outstanding approaches, which
improves the throughput and scalability by partitioning the blockchain network into
several small shards such that each can process a bunch of unconfirmed transactions
in parallel to generate medium blocks. Such medium blocks are then merged
together in a final block. Basically, sharding technique includes Network Sharding,
Transaction Sharding and State Sharding.
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1.2.3.4 Cross-Shard Transactions

One shortcoming of sharding technique is that the malicious network nodes residing
in the same shard may collude with each other, resulting in security issues.
Therefore, the sharding-based protocols exploits reshuffling strategy to address such
security threats. However, reshuffling brings the cross-shard data migration. Thus,
how to efficiently handle the cross-shard transactions becomes an emerging topic in
the context of sharding blockchain.

1.3 Theories to Improving the Performance of Blockchains

1.3.1 Latest Theories to Improving Blockchain Performance

Summary of this subsection is included in Table 1.2.

1.3.1.1 Throughput and Latency

Aiming to reduce the confirmation latency of transactions to milliseconds, Hari et al.
[8] proposed a high-throughput, low-latency, deterministic confirmation mechanism
called ACCEL for accelerating Bitcoin’s block confirmation. The key findings
include how to identify the singular blocks, and how to use singular blocks to reduce
the confirmation delay. Once the confirmation delay is reduced, the throughput
increases accordingly.

Two obstacles have hindered the scalability of the cryptocurrency systems. The
first one is the low throughput, and the other one is the requirement for every
node to duplicate the communication, storage, and state representation of the entire
blockchain network. Wang and Wang [9] studied how to solve the above obstacles.
Without weakening decentralization and security, the proposed Monoxide technique
offers a linear scale-out ability by partitioning the workload. And they preserved
the simplicity of the blockchain system and amplified its capacity. The authors
also proposed a novel Chu-ko-nu mining mechanism, which ensures the cross-
zone atomicity, efficiency and security of the blockchain system with thousands
of independent zones. Then, the authors have conducted experiments to evaluate
the scalability performance of the proposed Monoxide with respect to TPS, the
overheads of cross-zone transactions, the confirmation latency of transactions, etc.

To bitcoin, low throughput and long transaction confirmation latency are two
critical bottleneck metrics. To overcome these two bottlenecks, Yang et al. [10]
designed a new blockchain protocol called Prism, which achieves a scalable
throughput as high as 70,000 transactions per second, while ensuring a full security
of bitcoin. The project of Prism is open-sourced in Github. The instances of Prism
can be flexibly deployed on commercial cloud platform such as AWS. However, the
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authors also admitted that although the proposed Prism has a high throughput, its
confirming latency still maintains as large as 10 seconds since there is only a single
voter chain in Prism. A promising solution is to introduce a large number of such
voter chains, each of which is not necessarily secure. Even though every voter chain
is under attacking with a probability as high as 30%, the successful rate of attacking
a half number of all voter chains is still theoretically very low. Thus, the authors
believed that using multiple voter chains would be a good solution to reducing the
confirmation latency while not sacrificing system security.

Considering that Ethereum simply allocates transactions to shards according to
their account addresses rather than relying on the workload or the complexity of
transactions, the resource consumption of transactions in each shard is unbalanced.
In consequence, the network transaction throughput is affected and becomes low. To
solve this problem, Woo et al. [11] proposed a heuristic algorithm named GARET,
which is a gas consumption-aware relocation mechanism for improving throughput
in sharding-based Ethereum environments. In particular, the proposed GARET can
relocate transaction workloads of each shard according to the gas consumption. The
experiment results show that GARET achieves a higher transactions throughput and
a lower transaction latency compared with existing techniques.

1.3.1.2 Storage Efficiency

The transactions generated at real-time make the size of blockchains keep growing.
For example, the storage efficiency of original-version Bitcoin has received much
criticism since it requires to store the full transaction history in each Bitcoin peer.
Although some revised protocols advocate that only the full-size nodes store the
entire copy of whole ledger, the transactions still consume a large storage space in
those full-size nodes. To alleviate this problem, several pioneer studies proposed
storage-efficient solutions for blockchain networks. For example, By exploiting the
erasure code-based approach, Perard et al. [12] proposed a low-storage blockchain
mechanism, aiming to achieve a low requirement of storage for blockchains. The
new low-storage nodes only have to store the linearly encoded fragments of each
block. The original blockchain data can be easily recovered by retrieving fragments
from other nodes under the erasure-code framework. Thus, this type of blockchain
nodes allows blockchain clients to reduce the storage capacity. The authors also
tested their system on the low-configuration Raspberry Pi to show the effectiveness,
which demonstrates the possibility towards running blockchains on IoT devices.

Then, Dai et al. [13] proposed Jidar, which is a data reduction strategy for
Bitcoin. In Jidar, each node only has to store the transactions of interest and the
related Merkle branches from the complete blocks. All nodes verify transactions
collaboratively by a query mechanism. This approach seems very promising to the
storage efficiency of Bitcoin. Their experiments show that the proposed Jidar can
reduce the storage overhead of each peer to about 1% comparing with the original
Bitcoin.
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Under the similar idea, Xu et al. [14] reduced the storage of blockchains using a
segment blockchain mechanism, in which each node only needs to store a piece of
blockchain segment. The authors also proved that the proposed mechanism endures
a failure probability (¢/n)™ if an adversary party commits a collusion with less
than a number ¢ of nodes and each segment is stored by a number m of nodes. This
theoretical result is useful for the storage design of blockchains when developing a
particular segment mechanism towards data-heavy distributed applications.

1.3.1.3 Reliability of Blockchains

As a decentralized mechanism for data protection, the reliability of blockchains
plays an important role in data falsification. The following works studied the
fundamental supporting mechanisms to achieve data falsification prevention. The
availability of blockchains is a key factor for blockchain-based distributed appli-
cations (DApps). However, such availability guarantees of blockchain systems are
unknown. To this end, Weber et al. [15] studied the availability limitations of
two popular blockchains, i.e., Bitcoin and Ethereum. The authors found that the
availability of reading and writing operations are conflict to each other. Through
measuring and analyzing the transactions of Ethereum, they observed that the
DApps could be stuck in an uncertain state while transactions are pending in
a blockchain system. This observation suggests that maybe blockchains should
support some built-in transaction-abort options for DApps. The authors finally
presented techniques that can alleviate the availability limitations of Ethereum and
Bitcoin blockchains.

In public blockchains, the system clients join the blockchain network basically
through a third-party peer. Thus, the reliability of the selected blockchain peer is
critical to the security of clients in terms of both resource-efficiency and monetary
issues. To enable clients evaluate and choose the reliable blockchain peers, Zheng
et al. [16] proposed a hybrid reliability prediction model for blockchains named H-
BRP, which is able to predict the reliability of blockchain peers by extracting their
reliability parameters.

1.3.2  Scalability-Improving Solutions

One of the critical bottlenecks of today’s blockchain systems is the scalability. For
example, the throughput of a blockchain is not scalable when the network size
grows. To address this dilemma, a number of scalability approaches have been
proposed. In this part, we conduct an overview of the most recent solutions with
respect to Sharding techniques, interoperability among multiple blockchains, and
other solutions. We summarize this subsection in Table 1.3.
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1.3.2.1 Solutions to Sharding Blockchains

Bitcoin’s transaction throughput does not scale well. The solutions that use clas-
sical Byzantine consensus protocols do not work in an open environment like
cryptocurrencies. To solve the above problems, Luu et al. [1] proposed a new
distributed agreement protocol for the permission-less blockchains, called Elastico,
which is viewed as the first secure candidate for a sharding protocol towards the
open public blockchains that tolerate a constant fraction of byzantine-fault network
nodes. The key idea in Elastico is to partition the network into smaller committees,
each of which processes a disjoint set of transactions or a shard. The number of
committees grows linearly in the total computational power of the network. Using
Elastico, the blockchain’s transaction throughput increases almost linearly with the
computational power of the network.

Some early-stage sharding blockchain protocols (e.g., Elastico) improve the
scalability by enforcing multiple groups of committees work in parallel. However,
this manner still requires a large amount of communication for verifying every
transaction linearly increasing with the number of nodes within a committee.
Thus, the benefit of sharding policy was not fully employed. As an improved
solution, Zamani et al. [17] proposed a Byzantine-resilient sharding-based protocol,
namely Rapidchain, for permissionless blockchains. Taking the advantage of block
pipelining, RapidChain improves the throughput by using a sound intra-committee
consensus. The authors also developed an efficient cross-shard verification method
to avoid the broadcast messages flooding in the holistic network.

To enforce the throughput scaling with the network size, Gao et al. [33] proposed
a scalable blockchain protocol, which leverages both sharding and Proof-of-Stake
consensus techniques. Their experiments were performed in an Amazon EC2-
based simulation network. Although the results showed that the throughput of the
proposed protocol increases following the network size, the performance was still
not so high, for example, the maximum throughput was 36 transactions per second
and the transaction latency was around 27 seconds.

Aiming to improve the efficiency of cross-shard transactions, Amiri et al. [18]
proposed a permissioned blockchain system named SharPer, which is strive for
the scalability of blockchains by dividing and reallocating different data shards to
various network clusters. The major contributions of the proposed SharPer include
the related algorithm and protocol associated to such SharPer model. In the Amiri
previous work, they have already proposed a permissioned blockchain, upon which
the authors extended it by introducing a consensus protocol in the processing of both
intra-shard and cross-shard transactions. Finally, SharPer was devised by adopting
sharding techniques. One of the important contributions is that SharPer can be used
in the networks where there are a high percentage of non-faulty nodes. Furthermore,
SharPer also contributes a flattened consensus protocol w.r.t the order of cross-shard
transactions among all involved clusters.

Considering that the Ethereum places each group of transactions on a shard by
their account addresses, the workloads and complexity of transactions in shards
are apparently unbalanced. This manner further damages the network throughput.
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To address this uneven problem, Kim et al. [19] proposed D-GAS, which is a
dynamic load balancing mechanism for Ethereum shards. Using such D-GAS, the
transaction workloads of accounts on each shard can be reallocated according
to their gas consumption. The target is to maximize the throughput of those
transactions. The evaluation results showed that the proposed D-GAS achieved at
most a 12% superiority of transaction throughput and a 74% lower transaction
latency comparing with other existing techniques.

The random sharding strategy causes imbalanced performance gaps among
different committees in a blockchain network. Those gaps yield a bottleneck of
transaction throughput. Thus, Wang et al. [20] proposed a new sharding policy
for blockchains named NRSS, which exploits node rating to assess network nodes
according to their performance of transaction verifications. After such evaluation,
all network nodes will be reallocated to different committees aiming at filling the
previous imbalanced performance gaps. Through the experiments conducted on a
local blockchain system, the results showed that NRSS improves throughput by
around 32% under sharding techniques.

Sharding has been proposed to mainly improve the scalability and the throughput
performance of blockchains. A good sharding policy should minimize the cross-
shard communications as much as possible. A classic design of sharding is the
Transactions Sharding. However, such Transactions Sharding exploits the random
sharding policy, which leads to a dilemma that most transactions are cross-shard. To
this end, Nguyen et al. [21] proposed a new sharding paradigm differing from the
random sharding, called OptChain, which can minimize the number of cross-shard
transactions. The authors achieved their goal through the following two aspects.
First they designed two metrics, named T2S-score (Transaction-to-Shard) and L2S-
score (Latency-to-Shard), respectively. T2S-score aims to measure how likely a
transaction should be placed into a shard, while L2S-score is used to measure the
confirmation latency when placing a transaction into a shard. Next, they utilized a
well-known PageRank analysis to calculate T2S-score and proposed a mathematical
model to estimate L2S-score. Finally, how does the proposed OptChain place
transactions into shards based on the combination of T2S and L2S scores? In brief,
they introduced another metric composed of both T2S and L2S, called temporal
fitness score. For a given transaction u and a shard S;, OptChain figures the temporal
fitness score for the pair (u, S;). Then, OptChain just puts transaction u into the
shard that is with the highest temporal fitness score.

Similar to [21], Dang et al. [22] proposed a new shard-formation protocol, in
which the nodes of different shards are re-assigned into different committees to
reach a certain safety degree. In addition, they also proposed a coordination protocol
to handle the cross-shard transactions towards guarding against the Byzantine-fault
malicious coordinators. The experiment results showed that the throughput achieves
a few thousands of TPS in both a local cluster with 100 nodes and a large-scale
Google cloud platform testbed.

Considering that the reshuffling operations lead to huge data migration in the
sharding-based protocols, Chen et al. [23] devised a non-reshuffling structure
called SSChain. Such new sharding-based protocol can avoid the overhead of
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data migration while enabling both transaction sharding and state sharding. Their
evaluation results showed that SSChain achieves at least 6500 TPS in a network
with 1800 nodes and no periodical data-migration needed.

Multiple chains can help increase the throughput of the blockchain. However, one
issue under multiple-chain system must be solved. That is, the logical ordering of
blocks generated should be guaranteed, because the correct logical order is critical
to the confirmation of transactions. To this end, Niu et al. [24] proposed Eumonia,
which is a permissionless parallel-chain protocol towards a global ordering of
blocks. The authors implemented Eunomia by exploiting a fine-grained UTXO
sharding model, in which the conflicted transactions can be well handled, and such
protocol is proved as Simple Payment Verification (SPV) friendly.

Although the sharding techniques have received much interests recently, it should
be noticed that the committee organization is easily to attract Sybil attacks, in
which a malicious node can compromise the consensus by creating multiple dummy
committee members in the vote phase of the consensus protocol. To address such
Sybil attacks, Rajab et al. [25] systematically formulated a model and performed
an analysis w.r.t the vulnerability of Sybil attacks in the pioneer sharding protocol
Elastico [1]. The authors found that the blockchain nodes that have high hash-
computing power are capable to manipulate Elastico protocol using a large number
of Sybil IDs. The other two conditions of Sybil attacks were derived and evaluated
by numerical simulations.

The traditional Sharding blockchain protocols can only endure up to 1/3
Byzantine-fault nodes within a shard. This weak BFT feature makes the number
of nodes inside a shard cannot be small to ensure the shard functions securely. To
improve the sustainability of blockchain sharding, Xu et al. [26] proposed a new
BFT sharding approach that can tolerate at most 1/2 Byzantine-fault nodes existing
inside a shard. This approach benefits the throughput of decentralized databases.

Although the existing sharding-based protocols, e.g., Elastico, OminiLedger and
RapaidChain, have gained a lot of attention, they still have some drawbacks. For
example, the mutual connections among all honest nodes require a big amount of
communication resources. Furthermore, there is no an incentive mechanism driven
nodes to participate in sharding protocol actively. To solve those problems, Zhang
et al. [27] proposed CycLedger, which is a protocol designed for the sharding-
based distributed ledger towards scalability, reliable security, and incentives. Such
the proposed CycLedger is able to select a leader and a subset of nodes for each
committee that handle the intra-shard consensus and the synchronization with other
committees. A semi-commitment strategy and a recovery processing scheme were
also proposed to deal with system crashing. In addition, the authors also proposed a
reputation-based incentive policy to encourage nodes behaving honestly.
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1.3.2.2 Multiple-Chain and Cross-Chain: Interoperability Amongst
Multiple Blockchains

The interoperability of blockchains plays a significant role for the cross-chain
transactions. Such interoperability mainly includes the effective communications
and data exchange amongst multiple blockchains, as shown in Fig.1.1. A lot
of theoretical and practical issues of this direction need urgent solutions. Some
representative studies are reviewed as follows.

To enable rich functionalities and capabilities for the future blockchain ecosys-
tems, Jin et al. [28] proposed a novel interoperability architecture that supports the
cross-chain cooperation among multiple blockchains, such as bitcoin and Ethereum.
The authors classified the interoperability of multiple-chain ecosystems into passive
and active modes, which are shown in Fig. 1.2. Then, the authors introduced a
particular method, called Monitor Multiplexing Reading (MMR), dedicated to the
passive cross-chain communications.

Following the widespread adoption of smart contracts, the roles of blockchains
have been upgraded from token exchanges into programmable state machines. Thus,

I
®
\\Read &'jwme —pﬁa ¢
. N
Indirect Direct

(Centralized) (Decentralized)

Fig. 1.1 The illustration of interoperability across blockchains [28]. The left figure demonstrates
the indirect way of interoperability that requires a centralized third party. The right figure
demonstrates the direct way of interoperability without the presence of any third party

Data Source Chain Data Destination Chain Data Source Chain Data Destination Chain

(@) (b)

Fig. 1.2 The interoperability of blockchains [28]. Passive mode is shown in the left figure,
in which the source chain is monitored by the destination chain instead of actively sending
information to the destination chain as shown in the right figure. (a) Passive mode. (b) Active
mode



18 H. Huang et al.

the blockchain interoperability must evolve accordingly. To help realize such new
type of interoperability among multiple heterogeneous blockchains, Liu et al. [29]
proposed HyperService, which includes two major components, i.e., a programming
framework allowing developers to create cross-chain applications; and a universal
interoperability protocol towards secure implementation of DApps on blockchains.
The authors implemented a 35,000-line prototype to prove the practicality of
HyperService. Using the prototype, the end-to-end delays of cross-chain DApps,
and the aggregated platform throughput can be measured conveniently.

In an ecosystem that consists of multiple blockchains, interoperability among
those difference blockchains is an essential issue. To help the smart-contract
developers build DApps, Fynn et al. [30] proposed a practical Move protocol
that works for multiple blockchains. The basic idea of such protocol is to sup-
port a move operation enabling to move objects and smart contracts from one
blockchain to another. Recently, to enable cross-cryptocurrency transactions, Tian et
al. [31] proposed a decentralized cryptocurrency exchange strategy implemented on
Ethereum through smart contracts. Additionally, a great number of studies of cross-
chain communications are included in [32], in which readers can find a systematic
classification of cross-chain communication protocols.

1.3.3 New Protocols and Infrastructures

This subsection is summarized in Table 1.4.

1.3.3.1 New Protocols for Blockchains

David et al. [34] proposed a provably secure PoS protocol named Ouroboros Praos,
which particularly exploits forward secure digital signatures and a verifiable random
function such that the proposed Ouroboros Praos can endure any corruption towards
any participants from an adversary in a given message delivery delay.

In blockchain systems, a node only connects to a small number of neighbor
nodes. Mutual communications are achieved by gossip-like P2P messages. Based
on such P2P gossip communications, Buchman et al. [35] proposed a new protocol
named Tendermint, which serves as a new termination mechanism for simplifying
BFT consensus protocol.

In Monoxide proposed by Wang and Wang [9], the authors have devised a
novel proof-of-work scheme, named Chu-ko-nu mining. This new proof protocol
encourages a miner to create multiple blocks in different zones simultaneously with
a single PoW solving effort. This mechanism makes the effective mining power
in each zone is almost equal to the level of the total physical mining power in the
entire network. Thus, Chu-ko-nu mining increases the attack threshold for each zone
to 50%. Furthermore, Chu-ko-nu mining can improve the energy consumption spent
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on mining new blocks because a lot of more blocks can be produced in each round
of normal PoW mining.

The online services of crowdsourcing face a challenge to find a suitable consen-
sus protocol. By leveraging the advantages of the blockchain such as the traceability
of service contracts, Zou et al. [36] proposed a new consensus protocol, named
Proof-of-Trust (PoT) consensus, for crowdsourcing and the general online service
industries. Basically, such PoT consensus protocol leverages a trust management of
all service participants, and it works as a hybrid blockchain architecture in which a
consortium blockchain integrates with a public service network.

1.3.3.2 New Infrastructures and Architectures for Blockchains

Conventionally, block-based data structure is adopted by permissionless blockchain
systems as blocks can efficiently amortize the cost of cryptography. However, the
benefits of blocks are saturated in today’s permissioned blockchains since the block-
processing introduces large batching latencies. To the distributed ledgers that are
neither geo-distributed nor Pow-required, Istvdn et al. [37] proposed to shift the
traditional block-based data structure into the paradigm of stream-like transaction
processing. The premier advantage of such paradigm shift is to largely shrink
the end-to-end latencies for permissioned blockchains. The authors developed a
prototype of their concept based on Hyperledger Fabric. The results showed that
the end-to-end latencies achieved sub-10 ms and the throughput was close to 1500
TPS.

Permissioned blockchains have a number of limitations, such as poor per-
formance, privacy leaking, and inefficient cross-application transaction handling
mechanism. To address those issues, Amiri et al. [38] proposed CAPER, which a
permissioned blockchain that can well deal with the cross-application transactions
for distributed applications. In particular, CAPER constructs its blockchain ledger
using DAG and handles the cross-application transactions by adopting three specific
consensus protocols, i.e., a global consensus using a separate set of orders, a
hierarchical consensus protocol, and a one-level consensus protocol. Then, Chang et
al. [39] proposed an edge computing-based blockchain architecture, in which edge-
computing providers supply computational resources for blockchain miners. The
authors then formulated a two-phase stackelberg game for the proposed architecture,
aiming to find the Stackelberg equilibrium of the theoretical optimal mining scheme.
Next, Zheng et al. [40] proposed a new infrastructure for practical PoW blockchains
called AxeChain, which aims to exploit the precious computing power of miners
to solve arbitrary practical problems submitted by system users. The authors also
analyzed the trade-off between energy consumption and security guarantees of such
AxeChain. This study opens up a new direction for pursing high energy efficiency
of meaningful PoW protocols.

With the non-linear (e.g., graphical) structure adopted by blockchain networks,
researchers are becoming interested in the performance improvement brought by
new data structures. To find insights under such non-linear blockchain systems,
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Chen et al. [41] performed a systematic analysis by taking three critical metrics into
account, i.e., full verification, scalability, and finality-duration. The authors revealed
that it is impossible to achieve a blockchain that enables those three metrics at the
same time. Any blockchain designers must consider the trade-off among such three
properties.

1.4 Various Modelings and Techniques for Better
Understanding Blockchains

We summarize various analytical models for blockchain networks in Tables 1.5 and
1.6.

1.4.1 Graph-Based Theories

The graphs are widely used in blockchain networks. For example, Merkel Tree
has been adopted by Bitcoin, and several blockchain protocols, such as Ghost
[42], Phantom [43], and Conflux [44], constructed their blocks using the directed
acyclic graph (DAG) technique. Different from those generalized graph structures,
we review the most recent studies that exploit the graph theories for better
understanding blockchains in this part.

Since the transactions in blockchains are easily structured into graphs, the graph
theories and graph-based data mining techniques are viewed as good tools to
discover the interesting findings beyond the graphs of blockchain networks. Some
representative recent studies are reviewed as follows.

Leveraging the techniques of graph analysis, Chen et al. [45] characterized three
major activities on Ethereum, i.e., money transfer, the creation of smart contracts,
and the invocation of smart contracts. The major contribution is that it performed
the first systematic investigation and proposed new approaches based on cross-
graph analysis, which can address two security issues existing in Ethereum: attack
forensics and anomaly detection. Particularly, w.r.t the graph theory, the authors
mainly concentrated on the following two aspects:

1. Graph Construction: They identified four types of transactions that are not
related to money transfer, smart contract creation, or smart contract invocation.

2. Graph Analysis: Then, they divided the remaining transactions into three groups
according to the activities they triggered, i.e., money flow graph (MFG), smart
contract creation graph (CCG) and contract invocation graph (CIG).

Via this manner, the authors delivered many useful insights of transactions that are
helpful to address the security issues of Ethereum.
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Similarly, by processing Bitcoin transaction history, Akcora et al. [46] and Dixon
et al. [47] modeled the transfer network into an extreme transaction graph. Through
the analysis of chainlet activities [48] in the constructed graph, they proposed to use
GARCH-based forecasting models to identify the financial risk of Bitcoin market
for cryptocurrency users.

An emerging research direction associated with blockchain-based cryptocurren-
cies is to understand the network dynamics behind graphs of those blockchains,
such as the transaction graph. This is because people are wondering what the
connection between the price of a cryptocurrency and the dynamics of the overlying
transaction graph is. To answer such a question, Abay et al. [49] proposed Chainnet,
which is a computationally lightweight method to learning the graph features of
blockchains. The authors also disclosed several insightful findings. For example, it
is the topological feature of transaction graph that impacts the prediction of Bitcoin
price dynamics, rather than the degree distribution of the transaction graph.

Furthermore, utilizing the Mt. Gox transaction history, Chen et al. [50] also
exploited the graph-based data-mining approach to dig the market manipulation
of Bitcoin. The authors constructed three graphs, i.e., extreme high graph (EHG),
extreme low graph (ELG), and normal graph (NMG), based on the initial processing
of transaction dataset. Then, they discovered many correlations between market
manipulation patterns and the price of Bitcoin.

On the other direction, based on address graphs, Victor et al. [51] studied the
ERC20 token networks through analyzing smart contracts of Ethereum blockchain.
Different from other graph-based approaches, the authors focused on their attention
on the address graphs, i.e., token networks. With all network addresses, each token
network is viewed as an overlay graph of the entire Ethereum network addresses.
Similar to [45], the authors presented the relationship between transactions by
exploiting graph-based analysis, in which the arrows can denote the invoking
functions between transactions and smart contracts, and the token transfers between
transactions as well. The findings presented by this study help us have a well
understanding of token networks in terms of time-varying characteristics, such as
the usage patterns of the blockchain system. An interesting finding is that around
90% of all transfers stem from the top 1000 token contracts. That is to say, only less
than 10% of token recipients have transferred their tokens. This finding is contrary to
the viewpoint proposed by Somin et al. [52], where Somin et al. showed that the full
transfers seem to obey a power-law distribution. However, the study [51] indicated
that those transfers in token networks likely do not follow a power law. The authors
attributed such the observations to the following three possible reasons: (1) most
of the token users don’t have incentives to transfer their tokens. Instead, they just
simply hold tokens; (2) the majority of inactive tokens are treated as something like
unwanted spam; (3) a small portion, i.e., approximately 8%, of users intended to sell
their tokens to a market exchange.

Recently, Zhao et al. [53] explored the account creation, account vote, money
transfer and contract authorization activities of early-stage EOSIO transactions
through graph-based metric analysis. Their study revealed abnormal transactions
like voting gangs and frauds.
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1.4.2 Stochastic Modelings

The latencies of block transfer and processing are generally existing in blockchain
networks since the large number of miner nodes are geographically distributed.
Such delays increase the probability of forking and the vulnerability to malicious
attacks. Thus, it is critical to know how would the network dynamics caused by
the block propagation latencies and the fluctuation of hashing power of miners
impact the blockchain performance such as block generation rate. To find the
connection between those factors, Papadis et al. [54] developed stochastic models
to derive the blockchain evolution in a wide-area network. Their results showed
us practical insights for the design issues of blockchains, for example, how to
change the difficulty of mining in the PoW consensus while guaranteeing an
expected block generation rate or an immunity level of adversarial attacks. The
authors then performed analytical studies and simulations to evaluate the accuracy
of their models. This stochastic analysis opens up a door for us to have a deeper
understanding of dynamics in a blockchain network.

Towards the stability and scalability of blockchain systems, Gopalan et al. [S5]
also proposed a stochastic model for a blockchain system. During their modeling, a
structural asymptotic property called one-endedness was identified. The authors also
proved that a blockchain system is one-ended if it is stochastically stable. The upper
and lower bounds of the stability region were also studied. The authors found that
the stability bounds are closely related to the conductance of the P2P blockchain
network. Those findings are very insightful such that researchers can assess the
scalability of blockchain systems deployed on large-scale P2P networks.

Although Sharding protocol is viewed as a very promising solution to solving the
scalability of blockchains and adopted by multiple well-known blockchains such as
RapidChain [17], OmniLedger [2], and Monoxide [9], the failure probability for a
committee under Sharding protocol is still unknown. To fill this gap, Hafid et al. [56—
58] proposed a stochastic model to capture the security analysis under Sharding-
based blockchains using a probabilistic approach. With the proposed mathematical
model, the upper bound of the failure probability was derived for a committee. In
particular, three probability inequalities were used in their model, i.e., Chebysheyv,
Hoeffding, and Chvatal. The authors claim that the proposed stochastic model can
be used to analyze the security of any Sharding-based protocol.

1.4.3 Queueing Theories for Blockchain Systems

In blockchain networks, several stages of mining processing and the generation of
new blocks can be formulated as queueing systems, such as the transaction-arrival
queue, the transaction-confirmation queue, and the block-verification queue. Thus, a
growing number of studies are exploiting the queueing theory to disclose the mining
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and consensus mechanisms of blockchains. Some recent representative works are
reviewed as follows.

To develop a queueing theory of blockchain systems, Li et al. [59, 60] devised
a batch-service queueing system to describe the mining and the creating of new
blocks in miners’ pool. For the blockchain queueing system, the authors exploited
the type GI/M/1 continuous-time Markov process. Then, they derived the stable
condition and the stationary probability matrix of the queueing system utilizing the
matrix-geometric techniques.

Then, viewing that the confirmation delay of Bitcoin transactions are larger than
conventional credit card systems, Ricci et al. [61] proposed a theoretical framework
integrating the queueing theory and machine learning techniques to have a deep
understanding towards the transaction confirmation time. The reason the authors
chose the queueing theory for their study is that a queueing model is suitable to
see insights into how the different blockchain parameters affect the transaction
latencies. Their measurement results showed that the Bitcoin users experience a
delay that is slightly larger than the residual time of a block confirmation.

Frolkova et al. [62] formulated the synchronization process of Bitcoin network as
an infinite-server model. The authors derived a closed-form for the model that can
be used to capture the queue stationary distribution. Furthermore, they also proposed
a random-style fluid limit under service latencies.

On the other hand, to evaluate and optimize the performance of blockchain-based
systems, Memon et al. [64] proposed a simulation model by exploiting queueing
theory. In the proposed model, the authors constructed an M/M/1 queue for the
memory pool, and an M/M/c queue for the mining pool, respectively. This model
can capture multiple critical statistics metrics of blockchain networks, such as the
number of transactions every new block, the mining interval of a block, transactions
throughput, and the waiting time in memory pool, etc.

Next, Fang et al. [63] proposed a queueing analytical model to allocate mining
resources for the general PoW-based blockchain networks. The authors formulated
the queueing model using Lyapunov optimization techniques. Based on such
stochastic theory, a dynamic allocation algorithm was designed to find a trade-
off between mining energy and queueing delay. Different from the aforementioned
work [59-61], the proposed Lyapunov-based algorithm does not need to make any
statistical assumptions on the arrivals and services.

1.4.4 Analytical Models for Blockchain Networks

This subsection is summarized in Table 1.6.

For the people considering whether a blockchain system is needed for his/her
business, a notable fact is that blockchain is not always applicable to all real-life use
cases. To help analyze whether blockchain is appropriate to a specific application
scenario, Wust et al. [65] provided the first structured analytical methodology and
applied it to analyzing three representative scenarios, i.e., supply chain management,
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interbank payments, and decentralized autonomous organizations. The other article
[66] proposes a novel upper bound privacy leakage based approach to identify
intermediate data sets partitioned and distributed in cloud for encryption. This
approach can significantly improve the scalability and efficiency of data processing
for privacy preserving in cloud. This study provides insights of scalability, efficiency
and privacy issues in cloud for blockchain.

Although Ethereum has gained much popularity since its debut in 2014, the
systematically analysis of Ethereum transactions still suffers from insufficient
explorations. Therefore, Lin et al. [67] proposed to model the transactions using
the techniques of multiplex network. The authors then devised several random-walk
strategies for graph representation of the transactions network. This study could help
us better understand the temporal data and the multiplicity features of Ethereum
transactions.

To better understand the network features of an Ethereum transaction, Sousa et
al. [68] focused on the pending time, which is defined as the latency counting from
the time a transaction is observed to the time this transaction is packed into the
blockchain. The authors tried to find the correlations between such pending time
with the fee-related parameters such as gas and gas price. Surprisingly, their data-
driven empirical analysis results showed that the correlation between those two
factors has no clear clue. This finding is counterintuitive.

To achieve a consensus about the state of blockchains, miners have to compete
with each other by invoking a certain proof mechanism, say PoW. Such competition
among miners is the key module to public blockchains such as Bitcoin. To model
the competition over multiple miners of a cryptocurrency blockchain, Altman et al.
[69] exploited the Game Theory to find a Nash equilibria while peers are competing
mining resources. The proposed approach help researchers well understand such
competition. However, the authors also mentioned that they didn’t study the
punishment and cooperation between miners over the repeated games. Those open
topics will be very interesting for future studies.

Besides competitions among individual miners, there are also competitions
among mining pools. Malicious pools can pull off DDoS attacks to overload the
victim pools’ manager with invalid share submissions. The delay in verifying extra
share submissions potentially impairs the hash power of the victim pool and thus
undermines the potential reward for pool miners. Knowing that the chance of getting
a reward is smaller, miners in the victim pools would migrate to another mining
pools, which would further weaken the victim pools. To better understand this
kind of competition, Wu et al. [77] proposed a stochastic game-theoretic model
in a two-mining-pool case. The authors used Q-learning algorithm to find the Nash
equilibrium and maximize the long-term payoffs. The experiment showed that the
smaller mining pool is more likely to attack the larger one. Also, mining pools tend
to adopt lower attack level when the DDoS attack cost increases.

To ensure the consistency of PoW blockchain in an asynchronous network,
Zhao et al. [70] performed an analysis and derived a neat bound around ln(i%,
where © + v = 1, with u and v denoting the fraction of computation power
dominated by the honest and adversarial miners, respectively. Such a neat bound of
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mining latencies is helpful to us to well understand the consistency of Nakamoto’s
blockchain consensus in asynchronous networks.

Bitcoin’s consensus security is built upon the assumption of honest-majority.
Under this assumption, the blockchain system is thought secure only if the majority
of miners are honest while voting towards a global consensus. Recent researches
believe that network connectivity, the forks of a blockchain, and the strategy of
mining are major factors that impact the security of consensus in Bitcoin blockchain.
To provide pioneering concrete modelings and analysis, Xiao et al. [71] proposed an
analytical model to evaluate the network connectivity on the consensus security of
PoW blockchains. To validate the effectiveness of the proposed analytical model, the
authors applied it to two adversary scenarios, i.e., honest-but-potentially-colluding,
and selfish mining models.

Although Sharding is viewed as a prevalent technique for improving the scala-
bility to blockchain systems, several essential questions are: what we can expect
from and what price is required to pay for introducing Sharding technique to
Ethereum? To answer those questions, Fynn et al. [72] studied how sharding works
for Ethereum by modeling Ethereum into a graph. Via partitioning the graph, they
evaluated the trade-off between the edge-cut and balance. Several practical insights
have been disclosed. For example, three major components, e..g, computation,
storage and bandwidth, are playing a critical role when partitioning Ethereum; A
good design of incentives is also necessary for adopting sharding mechanism.

As mentioned multiple times, sharding technique is viewed as a promising
solution to improving the scalability of blockchains. However, the properties of a
sharded blockchain under a fully adaptive adversary are still unknown. To this end,
Avarikioti et al. [73] defined the consistency and scalability for sharded blockchain
protocol. The limitations of security and efficiency of sharding protocols were
also derived. Then, they analyzed these two properties on the context of multiple
popular sharding-based protocols such as OmniLedger, RapidChain, Elastico, and
Monoxide. Several interesting conclusions have been drawn. For example, the
authors thought that Elastico and Momoxide failed to guarantee the balance between
consistency and scalability properties, while OmniLedger and RapidChain fulfill all
requirements of a robust sharded blockchain protocol.

Forking attacks has become the normal threats faced by the blockchain market.
The related existing studies mainly focus on the detection of such attacks through
transactions. However, this manner cannot prevent the forking attacks from hap-
pening. To resist the forking attacks, Wang et al. [74] studied the fine-grained
vulnerability of blockchain networks caused by intentional forks using the large
deviation theory. This study can help set the robustness parameters for a blockchain
network since the vulnerability analysis provides the correlation between robust
level and the vulnerability probability. In detail, the authors found that it is much
more cost-efficient to set the robust level parameters than to spend the computational
capability used to lower the attack probability.

The existing economic analysis [78] reported that the attacks towards PoW
mining-based blockchain systems can be cheap under a specific condition when
renting sufficient hashrate capability. Moroz et al. [3] studied how to defense the
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double-spend attacks in an interesting reverse direction. The authors found that the
counterattack of victims can lead to a classic game-theoretic War of Attrition model.
This study showed us the double-spend attacks on some PoW-based blockchains are
actually cheap. However, the defense or even counterattack to such double-spend
attacks is possible when victims are owning the same capacity as the attacker.

Although BFT protocols have attracted a lot of attention, there are still a number
of fundamental limitations unaddressed while running blockchain applications
based on the classical BFT protocols. Those limitations include one related to
low performance issues, and two correlated to the gaps between the state machine
replication and blockchain models (i.e., the lack of strong persistence guarantees
and the occurrence of forks). To identify those limitations, Bessani et al. [75] first
studied them using a digital coin blockchain App called SmartCoin, and a popular
BFT replication library called BFT-SMART, then they discussed how to tackle these
limitations in a protocol-agnostic manner. The authors also implemented an experi-
mental platform of permissioned blockchain, namely SmartChain. Their evaluation
results showed that SmartChain can address the limitations aforementioned and
significantly improve the performance of a blockchain application.

The Nakamoto protocol is designed to solve the Byzantine Generals Problem for
permissionless Blockchains. However, a general analytical model is still missing
for capturing the steady-state profit of each miner against the competitors. To
this end, Yu et al. [76] studied the weighted resource distribution of proof-based
consensus engines, referred to as Proof-of-X (PoX), in large-scale networks. The
proposed Markov model attempts to unify the analysis of different PoX mechanisms
considering three new unified metrics, i.e., resource sensitivity, system convergence,
and resource fairness.

1.4.5 Data Analytics for Cryptocurrency Blockchains

This subsection is summarized in Table 1.7.

1.4.5.1 Market Risks Detection

As aforementioned, Akcora et al. [46] proposed a graph-based predictive model
to forecast the investment risk of Bitcoin market. On the other hand, with the
tremendously increasing price of cryptocurrencies such as Bitcoin, hackers are
imminently utilizing any available computational resources to participate in mining.
Thus, any web users face severe risks from the cryptocurrency-hungry hackers. For
example, the cryptojacking attacks [87] have raised growing attention. In such type
of attacks, a mining script is embedded secretly by a hacker without notice from
the user. When the script is loaded, the mining will begin in the background of the
system and a large portion of hardware resources are requisitioned for mining. To
tackle the cryptojacking attacks, Tahir et al. [79] proposed a machine learning-based
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solution, which leverages the hardware performance counters as the critical features
and can achieve a high accuracy while classifying the parasitic miners. The authors
also built their approach into a browser extension towards the widespread real-time
protection for web users. Similarly, Ning et al. [80] proposed CapJack, which is an
in-browser cryptojacking detector based on deep capsule network (CapsNet) [88]
technology.

As mentioned previously, to detect potential manipulation of Bitcoin market,
Chen et al. [50] proposed a graph-based mining to study the evidence from the
transaction network built based on Mt. Gox transaction history. The findings of this
study suggests that the cryptocurrency market requires regulation.

To predict drastic price fluctuation of Bitcoin, Dixon et al. [47] studied the impact
of extreme transaction graph (ETG) activity on the intraday dynamics of the Bitcoin
prices. The authors utilized chainlets [48] (sub graphs of transaction graph) for
developing their predictive models.

1.4.5.2 Ponzi Schemes Detection

Ponzi scheme [89], as a classic scam, is taking advantages of mainstream
blockchains such as Ethereum. Data mining technologies [90] are widely used for
detecting Ponzi schemes. For example, several representative studies are reviewed
as follows. Vasek et al. [82] analyzed the demand and supply Ponzi schemes on
Bitcoin ecosystem. The authors were interested at the reasons that make those Ponzi
frauds succeeded in attracting victims, and the lifetime of those scams. To detect
such Ponzi schemes towards a healthier blockchain economic environment, Chen et
al. [83, 84] proposed a machine learning-based classification model by exploiting
data mining on smart contracts of Ethereum. The experimental results showed that
the proposed detection model can even identify Ponzi schemes at the very beginning
when those schemes are created.

1.4.5.3 Money-Laundering Detection

Although Bitcoin has received enormous attention, it is also criticized for being car-
ried out criminal financial activities such as ponzi schemes and money laundering.
For example, Seo et al. [91] mentioned that money laundering conducted in the
underground market can be detected using the Bitcoin mixing services. However,
they didn’t present an essential anti-money laundering strategy. In contrast, utilizing
a transaction dataset collected over three years, Hu et al. [81] performed in-
depth detection for discovering money laundering activities on Bitcoin network.
To identify the money laundering transactions from the regular ones, the authors
proposed four types of classifiers based on the graph features appeared on the
transaction graph, i.e., immediate neighbors, deepwalk embeddings, node2vec
embeddings and decision tree-based.
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1.4.5.4 Portrait of Cryptoeconomic Systems

It is not common to introduce data science and stochastic simulation modelings into
the design problem of cryptoeconomic engineering. Laskowski et al. [85] presented
a practical evidence-based example to show how this manner can be applied to
designing cryptoeconomic blockchains.

Yaish et al. [86] discussed the relationship between the cryptocurrency mining
and the market price of the special hardware (ASICs) that supports POW consensus.
The authors showed that the decreasing volatility of Bitcoin’s price has a counterin-
tuitive negative impact to the value of mining hardware. This is because miners are
not financially incentivized to participate in mining, when Bitcoin becomes widely
adopted thus making its volatility decrease. This study also revealed that a mining
hardware ASIC could be imitated by bonds and underlying cryptocurrencies such
as bitcoins.

1.5 Useful Measurements, Datasets and Experiment Tools
for Blockchains

Measurements are summarized in Table 1.8, and datasets are summarized in
Table 1.9.

1.5.1 Performance Measurements and Datasets for
Blockchains

Although diverse blockchains have been proposed in recent years, very few efforts
have been devoted to measuring the performance of different blockchain systems.
Thus, this part reviews the representative studies of performance measurements for
blockchains. The measurement metrics include throughput, security, scalability, etc.

As a pioneer work in this direction, Gervais et al. [92] proposed a quantitative
framework, using which they studied the security and performance of several
PoW blockchains, such as Bitcoin, Litecoin, Dogecoin and Ethereum. The authors
focused on multiple metrics of security model, e.g., stale block rate, mining power,
mining costs, the number of block confirmations, propagation ability, and the
impact of eclipse attacks. They also conducted extensive simulations for the four
blockchains aforementioned with respect to the impact of block interval, the impact
of block size, and throughput. Via the evaluation of network parameters about the
security of PoW blockchains, researchers can compare the security performance
objectively, and thus help them appropriately make optimal adversarial strategies
and the security provisions of PoW blockchains.
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Nasir et al. [93] conducted performance measurements and discussion of two
versions of Hyperledger Fabric. The authors focused on the metrics including
execution time, transaction latency, throughput and the scalability versus the number
of nodes in blockchain platforms. Several useful insights have been revealed for the
two versions of Hyperledger Fabric. As already mentioned previously in [9], the
authors evaluated their proposed Monoxide w.r.t the metrics including the scalability
of TPS as the number of network zones increase, the overhead of both cross-
zone transactions and storage size, the confirmation latency of transactions, and
the orphan rate of blocks. In [10], the authors performed rich measurements for
their proposed new blockchain protocol Prism under limited network bandwidth
and CPU resources. The performance evaluated includes the distribution of block
propagation delays, the relationship between block size and mining rate, block size
versus assembly time, the expected time to reach consensus on block hash, the
expected time to reach consensus on blocks, etc.

Later, Zheng et al. [94] proposed a scalable framework for monitoring the
real-time performance blockchain systems. This work has evaluated four popular
blockchain systems, i.e., Ethereum, Parity [98], Cryptape Inter-enterprise Trust
Automation (CITA) [99] and Hyperledger Fabric [100], in terms of several metrics
including transactions per second, average response delay, transactions per CPU,
transactions per memory second, transactions per disk I/O and transactions per
network data. Such comprehensive performance evaluation results offered us rich
viewpoints on the 4 popular blockchain systems. Their experimental logs and
technique report [101] can be accessed from http://xblock.pro. Recently, Zheng et al.
[102] extended their work and released a new open-source dataset framework, called
XBlock-ETH, for the data-driven analysis of Ethereum. XBlock-ETH contains
multiple types of Ethereum data such as transactions, smart contracts and tokens.
Thus, researchers can extract and explore the data of Ethereum using XBlock-
ETH. The authors first collected and cleaned the most recent on-chain dataset from
Ethereum. Then, they presented how to perform basic exploration of these datasets
to make them best. Like their previous work, those datasets and processing codes
can be found from the webpage xblock.pro aforementioned. In the other similar
work [103] of the same team, authors proposed another new dataset framework
dedicated to EOSIO, named XBlock-EOS, which also includes multiple types
of rich on-chain/off-chain datasets such as transactions, blocks, smart contracts,
internal/external EOS transfer events, tokens, accounts and resource management.
To show how to utilize the proposed framework, the authors presented compre-
hensive statistics and explorations using those datasets, for example, blockchain
analysis, smart contract analysis, and cryptocurrency analysis. Finally, this study
also discussed future directions of XBlock-EOS in the topics including: (i) data
analysis based on off-chain data to provide off-chain user behavior for blockchain
developers, (ii) exploring new features of EOSIO data that are different from those
of Ethereum, and (iii) conducting a joint analysis of EOSIO with other blockchains.


http://xblock.pro
http://xblock.pro
http://xblock.pro
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1.5.2  Useful Evaluation Tools for Blockchains

Kalodner et al. [104] proposed BlockSci, which is designed as an open-source
software platform for blockchain analysis. Under the architecture of BlockSci,
the raw blockchain data is parsed to produce the core blockchain data including
transaction graph, indexes and scripts, which are then provided to the analysis
library. Together with the auxiliary data including P2P data, price data and user
tags, a client can either directly query or read through a Jupyter notebook interface.

To evaluate the performance of private blockchains, Dinh et al. [95] proposed
a benchmarking framework, named Blockbench, which can measure the data
processing capability and the performance of various layers of a blockchain system.
Using such Blockbench, the authors then performed detailed measurements and
analysis of three blockchains, i.e., Ethereum, Parity and Hyperledger. The results
disclosed some useful experiences of those three blockchain systems. For example,
today’s blockchains are not scalable w.r.t data processing workloads, and several
bottlenecks should be considered while designing different layers of blockchain in
the software engineering perspective.

Ethereum has received enormous attention on the mining challenges, the ana-
lytics of smart contracts, and the management of block mining. However, not so
many efforts have been spent on the information dissemination in the perspective
of P2P networks. To fill this gap, Kim et al. [96] proposed a measuring tool named
NodeFinder, which aims to discover the opaque network properties of Ethereum
network nodes. Through a three-month long data collection on the P2P network, the
authors analyzed and found several unprecedented differences of Ethereum network
comparing with other popular P2P networks like BitTorrent, Bitcoin and Gnutella
in terms of network size and geographic distribution.

Recently, by exploiting lightweight virtualization technologies, Alsahan et al.
[97] developed a configurable network simulator for the performance measurements
of Bitcoin. The proposed simulator allows users to configure diverse network
conditions, such as blockchain network topology, link delays, and mining dif-
ficulties, to emulate the real-world operation environment. Using this simulator,
experiments can be performed to measure Bitcoin network under various network
conditions. It also supports conducting the tests of security attacks and point of
failure simulations. The authors also made this simulator open-source on Github.

1.6 Open Issues and Future Directions

In this section, we envision the open issues and promising directions for future
studies.
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1.6.1 Performance-Improving Issues
1.6.1.1 Scalability Issues

Scalability is still a severe challenge for most of the blockchain systems. For
example, the PBFT consensus protocols issue a O(n%) number of messages, where
n is the number of participants. The large number of messages makes the scalability
unrealistic. Therefore, new distributed practical byzantine protocols and theoretical
modelings of scalability solutions, such as sidechain, subchain, off-chain, sharding
technique, DAG, and even chain-less proposals, are in an urgent need for scalable
blockchains.

1.6.1.2 Resilient Mechanisms for Sharding Technique

The sharding technique includes three typical categories, i.e., transaction sharding,
network sharding, and state sharding. Via the extensive review on the existing
studies of sharding techniques, we found that the resilient mechanisms for sharding
blockchains are still missing. Particularly to the state sharding, once the failures
occurred on blockchain nodes, how to ensure the correct recovery of the real-
time running states in the failed blockchain node(s) is critical to the resilience and
robustness of the blockchain.

1.6.1.3 Cross-Shard Performance

Although a number of committee-based sharding protocols [2, 9, 17, 105] have
been proposed, those protocols can only endure at most 1/3 adversaries. Thus,
more robust byzantine agreement protocols need to be devised. Furthermore, all the
sharding-based protocols incur additional cross-shard traffics and latencies because
of the cross-shard transactions. Therefore, the cross-shard performance in terms of
throughput, latency and other metrics, has to be well guaranteed in future studies.
On the other hand, the cross-shard transactions are inherent for the cross-shard
protocols. Thus, the pros and cons of such the correlation between different shards
are worthy investigating using certain modelings and theories such as graph-based
analysis.

1.6.1.4 Cross-Chain Transaction Accelerating Mechanisms

On cross-chain operations, [28] is essentially a pioneer step towards practical
blockchain-based ecosystems. Following this roadmap paved by Jin et al. [28], we
are exciting to anticipate the subsequent related investigations will appear soon
in the near future. For example, although the inter-chain transaction experiments
achieve an initial success, we believe that the secure cross-chain transaction
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accelerating mechanisms are still on the way. In addition, further improvements
are still required for the interoperability among multiple blockchains, such as
decentralized load balancing smart contracts for sharded blockchains.

1.6.1.5 Ordering Blocks for Multiple-Chain Protocols

Although multiple-chain techniques can improve the throughput by exploiting the
parallel mining of multiple chain instances, how to construct and manage the blocks
in all chains in a globally consistent order is still a challenge to the multiple-chain
based scalability protocols and solutions.

1.6.1.6 Hardware-Assisted Accelerating Solutions for Blockchain
Networks

To improve the performance of blockchains, for example, to reduce the latency
of transaction confirmation, some advanced network technologies, such as RDMA
(Remote Direct Memory Access) and high-speed network cards, can be exploited in
accelerating the data-access among miners in blockchain networks.

1.6.1.7 Performance Optimization in Different Blockchain Network
Layers

The blockchain network is built over the P2P networks, which include several
typical layers, such as mac layer, routing layer, network layer, and application
layer. The BFT-based protocols are essentially working for the network layer. In
fact, performance improvements can be achieved by proposing various protocols,
algorithms, and theoretical models for other layers of the blockchain network.

1.6.1.8 Blockchain-Assisted BigData Networks

Although big data and blockchain have several performance metrics that are con-
trary to each other. For example, big data is a centralized management technology
with an emphasize on the privacy-preserving oriented to diverse computing envi-
ronments. The data processed by big data technology should ensure nonredundancy
and unstructured architecture in a large-scale computing network. In contrast,
blockchain technology builds on a decentralized, transparent and immutable archi-
tecture, in which data type is simple, data is structured and highly redundant.
Furthermore, the performance of blockchains require scalability and the off-chain
computing paradigm. Thus, how to integrate those two technologies together and
pursue the mutual benefit for each other is an open issue that is worthy in-depth
studies. For example, the potential research topics include how to design a suitable
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new blockchain architecture for big data technologies, and how to break the isolated
data islands using blockchains while guaranteeing the privacy issues of big data.

1.6.2 Issues for Better Understanding Blockchains Further

Although the state-of-the-art studies have reviewed a lot of modelings and theories
for better understanding blockchains, more sophisticated approaches and insightful
mechanisms are still needed to help researchers gain a new level of perception
over the high-performance blockchain systems. Some interesting directions are
summarized here for inspiring more subsequent investigations.

* Exploiting more general queueing theories to capture the real-world arrival pro-
cess of transactions, mining new blocks, and other queueing-related blockchain
phases.

e Performing priority-based service policies while dealing with transactions and
new blocks, to meet a predefined security or regulation level.

¢ Developing more general probabilistic models to characterize the correlations
among the multiple performance parameters of blockchain systems.

1.6.3 Security Issues of Blockchains
1.6.3.1 Privacy-Preserving for Blockchains

From the previous overview, we observe that most of the existing works under
this category are discussing the blockchain-based security and privacy-preserving
applications. The fact is that the security and privacy are also the critical issues of
the blockchain itself. For example, the privacy of transactions could be hacked by
attackers. However, dedicated studies focusing on those issues are still insufficient.

1.6.3.2 Anti-cryptojacking Mechanisms for Malicious Miners

The Cryptojacking Miners are reportedly existing in web browsers according to
[79]. This type of malicious codes is commandeering the hardware resources such
as computational capability and memory of web users. Thus, the anti-cryptojacking
mechanisms and strategies are necessary to develop for protecting normal browser
users.
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1.6.3.3 Security Issues of Cryptocurrency Blockchains

The security issues of cryptocurrency blockchains, such as double-spend attacks,
frauds in smart contracts, have arisen growing attention from both industrial
and academic fields. However, little efforts have been committed to the theoreti-
cal investigations towards the security issues of cryptocurrency blockchains. For
example, the exploration of punishment and cooperation between miners over
multiple chains is an interesting topic for cryptocurrency blockchains. Thus, we
expect to see broader perspectives of modeling the behaviors of both attackers and
counterattackers in the context of monetary blockchain attacks.

1.6.4 Powerful Experimental Platforms for Blockchains

To most of the beginners in the field of the blockchain, they have a problem
about lack of powerful simulation/emulation tools for verifying their new ideas or
protocols. Therefore, the powerful simulation/emulation platforms that are easy to
deploy scalable testbeds for the experiments would be very helpful to the research
community.

Tailor-made experiment platforms based on existing blockchain systems are
also needed. Building a blockchain system from scratch, or learning from the
implementation of existing blockchain systems by reading codes, these are some
time-consuming yet not rewarding tasks for researchers. A platform that enable us to
tweak a variety of aspects of interest in existing blockchain systems can potentially
be very helpful to the research community as well.

1.7 Conclusion

Through investigations, we found that a dedicated survey focusing on the theoretical
modelings, analytical models and useful experiment tools for blockchains is still
missing. To fill this gap, we then conducted a comprehensive survey of the state-
of-the-art on blockchains, particularly in the perspectives of theories, modelings,
and measurement/evaluation tools. The taxonomy of each topic presented in this
chapter tried to convey the new protocols, ideas, and solutions that can improve the
scalability of blockchains, and help people better understand the blockchains in a
further level. We believe our work provides a timely guidance on the theoretical
insights of blockchains for researchers, engineers, educators, and generalized
readers.
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